Photoproduction of isolated photons with a jet at HERA. Status update

Peter Bussey, David Saxon, Ian Skillicorn, Andriy Iudin, Nataliia Kondrashova, Volodymyr Myronenko
(University of Glasgow / Kyiv National University "Kyiv Polytechnic Institute" / National University of Kyiv-Mohyla Academy)

ZEUS Physics meeting
Hamburg, 04 December, 2013

Introduction

A prompt photon is one that emerges directly from a perturbative QCD process. LO diagrams are illustrated above: (a) direct, in which the entire incoming photon interacts, (c) resolved, in which a parton from the photon interacts.

Higher order pQCD processes occur and also
"fragmentation" processes (b, d).

Motivation

- Prompt (isolated, high p_{T}) photons are a useful tool to study and test QCD.
- Their measurements are more precise than hadronic jets.
- Prompt photons can be used to measure and constrain the pdfs of proton and photon.
- Looking at two new variables:
- x_{p} - measures longitudinal momentum transfer from proton sensitive to PDF and modelling of parton in proton - interesting to see LMZ description of this with k_{T}-factorisation.
- $\Delta \Phi$ - the azimuthal difference between the photon and the jet, sensitive to higher order processes.
- Study of three regions of x_{y} - longitudinal momentum transfer from photon, resolved- and direct-enhanced:

$$
x_{\mathrm{V}}<0.7, x_{\mathrm{y}}<0.8 \text { and } \mathrm{x}_{\mathrm{r}}>0.8
$$

Data Samples

Data: HERA II 04p, 04/05e, 06e, 06p, 07p (Common Ntuples v06d) $374 \mathrm{pb}^{-1}$
MC Signal: 04p, 05e, 06e, 06p, 07p (CN v06b PYTHIA) Direct, Resolved
MC Background: 04p, 04/05e, 06e, 06p, 07p (CN v06b PYTHIA - Heavy Flavour Group, Jet - Sebastian's + Filtered)
Direct, Resolved

Cuts

Event Selection

Trigger HPP16 on
$0.2<\mathrm{y}_{\mathrm{JB}}<0.7$
\mid Zvtx $\mid<40 \mathrm{~cm}$
\mid BCAL time $\mid<10 \mathrm{~ns}$
Cal $\mathrm{p}_{\mathrm{T}}<10 \mathrm{GeV}$
No SINISTRA electron with Prob >0.9 and $\mathrm{Yel}<0.7$

Prompt Photon Selection

Tufo[0] $=31$
$-0.7<\eta^{\text {zufo }}<0.9$
$6<\mathrm{E}_{\mathrm{T}}^{\text {zufo }}<15 \mathrm{GeV}$
Ezufo $^{\text {zuet }}>0.9$
ZufoEemc/ZufoEcal>0.9
track isolation in cone 0.2
$\mathrm{x}_{\gamma}<0.7, \mathrm{x}_{\gamma}<0.8$ or $\mathrm{x}_{\gamma}>0.8$

Jet Selection

$-1.5<\eta^{\text {jet }}<1.8$
$4<\mathrm{E}_{\mathrm{T}}{ }^{\text {jet }}<35 \mathrm{GeV}$

Truth level selection

$\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$
$0.2<\mathrm{y}_{\mathrm{JB}}<0.7$
Particle type 29
$-0.7<\eta^{\text {particle }}<0.9$
$6<\mathrm{E}_{\mathrm{T}}{ }^{\text {particle }}<15 \mathrm{GeV}$
Eparticle $^{\text {per }}{ }^{\text {jet }}>0.9$

Theory

FGH (Fontannaz, Guillet and Heinrich) - the LO and NLO diagrams and the box-diagram term are calculated explicitly. Fragmentation processes calculated in terms of fragmentation function.

LMZ (Lipatov, Malyshev and Zotov) - K_{T}-factorisation method makes use of unintegrated parton densities in the proton. Fragmentation terms are not included. The box diagram is included together with $2 \rightarrow 3$ subprocesses:
$\mathrm{v}\left(\mathrm{k}_{1}\right)+\mathrm{q}\left(\mathrm{k}_{2}\right) \rightarrow \mathrm{v}\left(\mathrm{p}_{1}\right)+\mathrm{g}\left(\mathrm{p}_{2}\right)+\mathrm{q}\left(\mathrm{p}_{3}\right)$
$\mathrm{Y}\left(\mathrm{k}_{1}\right)+\mathrm{g}^{*}\left(\mathrm{k}_{2}\right) \rightarrow \mathrm{Y}\left(\mathrm{p}_{1}\right)+\mathrm{q}\left(\mathrm{p}_{2}\right)+\mathrm{qbar}\left(\mathrm{p}_{3}\right)$
$\mathrm{v}\left(\mathrm{k}_{1}\right)+\mathrm{g}\left(\mathrm{k}_{2}\right) \rightarrow \mathrm{v}\left(\mathrm{p}_{1}\right)+\mathrm{g}\left(\mathrm{p}_{2}\right)$.
Now gq $\rightarrow \mathrm{yq}$ process is also included except several distributions. Waiting for the update.

Cross sections. X_{b}

ZEUS

ZEUS

ZEUS

ZEUS

Reasonable description of data by theory. New hadronisation corrections are applied to theory. Only resolved had. corr. is used in $x_{v}<0.7, x_{v}<0.8$ regions and direct in $x_{v}<0.8$. Inner and outer error bars - statistical uncertainties and statistical and systematic in quadrature.

Cross sections. $\Delta \Phi$

ZEUS

ZEUS

ZEUS

ZEUS

Reasonable description by theory, however there is an overestimation in the 0-90 bin that is coming from $x_{y}<0.7$ range in $F G H$ and underestimation in $90-170^{\circ}$ in LMZ in low x_{r} region.

Cross sections. $E_{T}{ }^{\gamma}$

FGH describes data within errors. LMZ tends to underestimate low x_{v} region.

ZEUS

ZEUS

ZEUS

Cross sections. η^{γ}

ZEUS

FGH describes data within errors. LMZ tends to underestimate low x_{v} region.

ZEUS

Cross sections. $E^{\text {jet }}$ T

 ZEUSFirst two FGH $E_{T}^{\text {jet }}$ (4-6 and 6-8 GeV) bins are combined due to singularity. Reasonable description of data. LMZ tends to underestimate low x_{V} region.

ZEUS

ZEUS

Cross sections. $\eta^{\text {jet }}$

ZEUS

Apart from overestimating low $\eta^{\text {jet }}$ FGH describes data within errors. LMZ tends to underestimate low x_{y} region.

ZEUS

ZEUS

Consistency check

	$\mathrm{x}_{\mathrm{r}}>0.8$			$\mathrm{x}_{\mathrm{v}}<0.8$			Sum			All x_{v}		
	FGH	LMZ	Data									
$\eta^{\text {jet }}$	13.49	16.47	13.13	7.1	4.34	8.47	20.59	20.81	21.6	22.47	20.34	22.16
$E_{\text {T }}^{\text {jet * }}$	12.52	16.06	12.83	6.74	4.18	8.52	19.26	20.24	21.35	20.9	19.31	21.76
η^{γ}	12.97	16.72	12.97	6.97	4.31	8.53	19.94	21.03	21.5	21.58	20.82	21.58
$E_{\text {T }}{ }^{\text {V }}$	12.9	16.72	13.22	6.92	4.29	8.71	19.82	21.01	21.93	21.48	20.53	22.44

* - bin $15<\mathrm{E}_{T}^{\text {jet }}<35 \mathrm{GeV}$ is not included in this sum.

There is an agreement within errors between the sum of different ranges of x_{v} and the full x_{v} range in theories and data.

Conclusion

Cross section comparison with FGH and LMZ in $\mathrm{x}_{\mathrm{y}}<0.8$ range shown, new hadronisation corrections applied.

Both theories provide good description within errors in $x_{v}>0.8$, but there is an overestimation in $0<\Delta \Phi<90^{\circ}$ bin that is mostly likely coming from $x_{v}<0.7$ region. LMZ tends to underestimate low X_{V} region.

Future plans

Reach agreement on corrections between analyses.
Obtain and add the rest of LMZ predictions.
DIS contamination study.

Backup slides

$<\delta Z>$ Fits in $\Delta \Phi$ bins. All x

First bin $0<\Delta \Phi<90^{\circ}$:
$\chi^{2} /$ n.d.f. $=1.05625$
fitted photons 212 ± 36
Bin looks good

$<\delta Z>$ Fits in $\Delta \Phi$ bins. $x_{V}<0.7$

First bin $0<\Delta \Phi<90^{\circ}$:
$\chi^{2} /$ n.d.f. $=0.86857$
fitted photons 122 ± 29
Bin looks good

$<\delta Z>$ Fits in $\Delta \Phi$ bins. $x_{v}<0.8$

First bin $0<\Delta \Phi<90^{\circ}$:
$\chi^{2} /$ n.d.f. $=0.94718$
fitted photons 169 ± 34
Bin looks good

$<\delta Z>$ Fits in $\Delta \Phi$ bins. $x_{v}>0.8$

First bin $0<\Delta \Phi<90^{\circ}$:
$\chi^{2} /$ n.d.f. $=0.92611$
fitted photons 38 ± 13
Small statistics

Major sources of systematics. $E_{T}{ }^{\vee}$ variation

Photon variables.
Vary $E_{T}{ }^{\mathrm{r}}$ by $\pm 2 \%$.

Major sources of systematics. $E_{T}{ }^{Y}$ variation

Jet variables.
Vary $E_{T}{ }^{\gamma}$ by $\pm 2 \%$.

Major sources of systematics. HERWIG

Photon variables.
Use HERWIG model (signal and background) instead of PYTHIA for

- < $\delta Z>$ fits
- acceptance corrections calculation
- direct/resolved ratio determination

Major sources of systematics. HERWIG

Jet variables.
Use HERWIG model (signal and background) instead of PYTHIA for

- < $\delta Z>$ fits
- acceptance corrections calculation
- direct/resolved ratio determination

Major sources of systematics. Jet energy

Photon variables.
Vary jet energy independently from gamma energy:
If JetEt $\leq 6 \mathrm{GeV}$ by sqrt(4.*4. + 2.*2.))
If $6<\mathrm{JetEt} \leq 10 \mathrm{GeV}$ by sqrt(2.*2. +2.*2.))
If JetEt > 10 GeV vary by sqrt(1.5*1.5 + 2.*2.))

Major sources of systematics. Jet energy

Photon variables.
Vary jet energy independently from gamma energy:
If JetEt $\leq 6 \mathrm{GeV}$ by sqrt(4.*4. + 2.*2.))
If $6<\mathrm{JetEt} \leq 10 \mathrm{GeV}$ by sqrt(2.*2. +2.*2.))
If JetEt > 10 GeV vary by sqrt(1.5*1.5 + 2.*2.))

Control plots. $x_{V}<0.7$

Control plots. $x_{v}<0.7$

Control plots. $x_{v}>0.8$

Control plots. $x_{v}>0.8$

Systematic uncertainties

$$
x_{y}<0.7
$$

$\eta^{\gamma}, X_{i}^{\text {meas }}>0.8$ Overall

 $\eta^{7}, \mathbf{X}_{\gamma}^{\text {meas }}>0.8$ UncorJE

$\eta^{\gamma}, X_{\gamma}^{\text {meas }}>0.8$ Z-Vertex

$\eta^{\gamma}, \mathbf{X}_{Y}^{\text {meas }}>0.8$ HERWIG

$\eta^{\gamma}, X_{\gamma}^{\text {meas }}>\mathbf{0 . 8}$ fraction EMC

- Rel.statistical uncertainties
- 10% line
\bigcirc upper sum
- lower sum

- -15% resolved
- $+15 \%$ resolved

-10% line
- variation up
- variation down

——Rel.statistical uncertainties δZ
- 10% line
- $\left|Z_{\text {vertex }}\right|<45$
- $\left|Z_{\text {vertex }}\right|<35$

- $p_{\text {track }}>350 \mathrm{MeV}$
- $p_{\text {track }}>150 \mathrm{MeV}$

- $+5 \%$ Fragmentation
- -5% Fragmentation

- Rel.statistical uncertainties
10% line
- HERWIG

- Rel.statistical uncertainties
- 10% line
- Fraction EMC +0.025
- Fraction EMC -0.025

- Rel.statistical uncertainties
- 10% line
- $E_{\gamma}+2 \%$
- $E_{\gamma}-2 \%$

- δZ fit range 1.0
- δZ fit range 0.6

- 10% line

○ $\quad \delta R 0.3$

- $\quad \delta R 0.1$

$\Delta \Phi$ Track Magnitude

Systematic uncertainties $X_{y}<0.8$

- upper sum
- lower sum

- -15% resolved
- $+15 \%$ resolved

- variation up
- variation down

——Rel.statistical uncertainties δZ
- 10% line
- $\left|Z_{\text {vertex }}\right|<45$
- $\left|Z_{\text {vertex }}\right|<35$

- $p_{\text {track }}>350 \mathrm{MeV}$
- $p_{\text {track }}>150 \mathrm{MeV}$

- $+5 \%$ Fragmentation
- -5% Fragmentation

- Rel.statistical uncertainties
10% line
- HERWIG

- Rel.statistical uncertainties
- 10% line
- Fraction EMC +0.025
- Fraction EMC -0.025

- Rel.statistical uncertainties
- 10% line
- $E_{\gamma}+2 \%$
- $E_{\gamma}-2 \%$

- δZ fit range 1.0
- δZ fit range 0.6

○ $\quad \delta R 0.3$

- $\quad \delta R 0.1$

$\Delta \Phi$ Track Magnitude

