

Photoproduction of isolated photons with a jet at HERA. Status update

Peter Bussey, David Saxon, Ian Skillicorn, <u>Andriy Iudin</u>, Nataliia Kondrashova, Volodymyr Myronenko

(University of Glasgow / Kyiv National University "Kyiv Polytechnic Institute" / National University of Kyiv-Mohyla Academy)

> ZEUS Physics meeting Hamburg, 04 December, 2013

Introduction

A prompt photon is one that emerges directly from a perturbative QCD process. LO diagrams are illustrated above:
(a) direct, in which the entire incoming photon interacts,
(c) resolved, in which a parton from the photon interacts. Higher order pQCD processes occur and also
"fragmentation" processes (b, d). Motivation

- Prompt (isolated, high p_T) photons are a useful tool to study and test QCD.
- Their measurements are more precise than hadronic jets.
- Prompt photons can be used to measure and constrain the pdfs of proton and photon.
- Looking at two new variables:
 - $-x_{p}$ measures longitudinal momentum transfer from proton sensitive to PDF and modelling of parton in proton interesting to see LMZ description of this with k_r-factorisation.
 - $-\Delta \Phi$ the azimuthal difference between the photon and the jet, sensitive to higher order processes.
- Study of three regions of x_{γ} longitudinal momentum transfer from photon, resolved- and direct-enhanced:

$$x_{y} < 0.7, x_{y} < 0.8$$
 and $x_{y} > 0.8$

Data Samples

Data: HERA II 04p, 04/05e, 06e, 06p, 07p (Common Ntuples v06d) 374 pb⁻¹ MC Signal: 04p, 05e, 06e, 06p, 07p (CN v06b PYTHIA) Direct, Resolved *MC Background*: 04p, 04/05e, 06e, 06p, 07p (CN v06b PYTHIA - Heavy Flavour Group, Jet – Sebastian's + Filtered) Direct, Resolved

Cuts

Event Selection	Prompt Photon Selection	Jet Selection		
Trigger HPP16 on	Tufo[0] = 31	-1.5 <n<sup>jet<1.8</n<sup>		
$0.2 < y_{JB} < 0.7$	$-0.7 < \eta^{zufo} < 0.9$	$4 < F_{-}$ jet < 35 GeV		
Zvtx <40 cm	$6 < E_T^{zufo} < 15 \text{ GeV}$			
BCAL time <10 ns	E ^{zufo} /E ^{jet} >0.9	Truth laval salaction		
Cal p _T <10 GeV	ZufoEemc/ZufoEcal>0.9			
No SINISTRA electron with	track isolation in cone 0.2	$Q^2 < 1 \text{ GeV}^2$		
Prob > 0.9 and $Yel < 0.7$		$0.2 < y_{JB} < 0.7$		
	$x_{\gamma} < 0.7, x_{\gamma} < 0.8 \text{ or } x_{\gamma} > 0.8$	Particle type 29		

Particle type 29

 $-0.7 < \eta^{particle} < 0.9$

6<E_T^{particle}<15 GeV

Eparticle/Ejet>0.9

Theory

FGH (Fontannaz, Guillet and Heinrich) - the LO and NLO diagrams and the box-diagram term are calculated explicitly. Fragmentation processes calculated in terms of fragmentation function.

LMZ (Lipatov, Malyshev and Zotov) - k_{τ} -factorisation method makes use

of unintegrated parton densities in the proton. Fragmentation terms are not included. The box diagram is included together with $2 \rightarrow 3$ subprocesses:

$$\begin{split} &\gamma(k_1) + q(k_2) \rightarrow \gamma(p_1) + g(p_2) + q(p_3) \\ &\gamma(k_1) + g^*(k_2) \rightarrow \gamma(p_1) + q(p_2) + qbar(p_3) \\ &\gamma(k_1) + g(k_2) \rightarrow \gamma(p_1) + g(p_2). \end{split}$$

Now $gq \rightarrow \gamma q$ process is also included except several distributions. Waiting for the update.

Inner and outer error bars – statistical uncertainties and statistical and systematic in quadrature.

6

Cross sections. $\Delta \Phi$

ZEUS

dơ/d∆Փ (pb/deg)

dơ/d∆Փ (pb/deg)

Reasonable description by theory, however there is an overestimation in the 0-90° bin 7 that is coming from x_v < 0.7 range in FGH and underestimation in 90-170° in LMZ in low x_v region.

Cross sections. η^{γ}

15

10

5

0

-0.6

-0.4

-0.2

FGH describes data within errors. LMZ tends to underestimate low x_{y} region.

0.2

0.4

0.6

0

0.8

 η^{γ}

9

5

4

3

2

1

0

4

4.5

3.5

2.5

1.5

0.5

dơ/dE_T^{jet} (pb/GeV)

Cross sections. η^{jet}

Apart from overestimating low η^{jet} FGH describes data within errors. LMZ tends to underestimate low x_{y} region.

Consistency check

	x,>0.8			x _v <0.8		Sum		All x _y				
	FGH	LMZ	Data	FGH	LMZ	Data	FGH	LMZ	Data	FGH	LMZ	Data
$\mathbf{\eta}^{jet}$	13.49	16.47	13.13	7.1	4.34	8.47	20.59	20.81	21.6	22.47	20.34	22.16
E ^{jet*}	12.52	16.06	12.83	6.74	4.18	8.52	19.26	20.24	21.35	20.9	19.31	21.76
η	12.97	16.72	12.97	6.97	4.31	8.53	19.94	21.03	21.5	21.58	20.82	21.58
Ε _τ Υ	12.9	16.72	13.22	6.92	4.29	8.71	19.82	21.01	21.93	21.48	20.53	22.44

* - bin 15 < E_{τ}^{jet} < 35 GeV is not included in this sum.

There is an agreement within errors between the sum of different ranges of x_{γ} and the full x_{γ} range in theories and data.

Conclusion

Cross section comparison with FGH and LMZ in $x_{\gamma} < 0.8$ range shown, new hadronisation corrections applied.

Both theories provide good description within errors in $x_{\gamma} > 0.8$, but there is an overestimation in $0 < \Delta \Phi < 90^{\circ}$ bin that is mostly likely coming from $x_{\gamma} < 0.7$ region. LMZ tends to underestimate low x_{γ} region.

Future plans

Reach agreement on corrections between analyses.

Obtain and add the rest of LMZ predictions.

DIS contamination study.

Backup slides

$<\delta Z>$ Fits in $\Delta \Phi$ bins. All x

First bin $0 < \Delta \Phi < 90^{\circ}$: $\chi^2 / n.d.f. = 1.05625$ fitted photons 212 ± 36 Bin looks good

 $<\delta Z>$ Fits in $\Delta \Phi$ bins. x < 0.7

First bin $0 < \Delta \Phi < 90^{\circ}$: $\chi^2 / n.d.f. = 0.86857$ fitted photons 122 ± 29 Bin looks good

$<\delta Z>$ Fits in $\Delta \Phi$ bins. x_v < 0.8

0.6

0.8

0.4

10

5

First bin $0 < \Delta \Phi < 90^{\circ}$: $\chi^2 / n.d.f. = 0.94718$ fitted photons 169 ± 34 Bin looks good

$<\delta Z>$ Fits in $\Delta \Phi$ bins. x_v > 0.8

ðe.

First bin $0 < \Delta \Phi < 90^{\circ}$: $\chi^2 / n.d.f. = 0.92611$ fitted photons 38 ± 13 Small statistics

Major sources of systematics. E_{T}^{γ} variation

-0.2

-0.3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Major sources of systematics. E_{T}^{γ} variation

Major sources of systematics. HERWIG

0.6

0.2

0.4

-0.6

-0.4

-0.2

Photon variables.

Use HERWIG model (signal and background) instead of PYTHIA for

- $<\delta Z>$ fits
- acceptance corrections calculation
- direct/resolved ratio determination

Major sources of systematics. HERWIG

 \overline{O}

1.5

Ô

0.5

Major sources of systematics. Jet energy

Ο

Major sources of systematics. Jet energy

1.5

-0.5

-1

0

0.5

If JetEt > 10 GeV vary by sqrt(1.5*1.5 + 2.*2.))

Control plots. $x_{\gamma} < 0.7$

Control plots. $x_{\gamma} < 0.7$

Control plots. $x_{\gamma} > 0.8$

Control plots. $x_y > 0.8$

Systematic uncertainties x_v < 0.7

— Rel.statistical uncertainties

—— 10% line

 \bigcirc upper sum

lower sum

— Rel.statistical uncertainties

—— 10% line

- \circ -15% resolved
 - +15% resolved

— Rel.statistical uncertainties

—— 10% line

 \circ variation up

variation down

- $\circ |Z_{vertex}| \leq 45$
- $|Z_{vertex}| < 35$

— Rel.statistical uncertainties

—— 10% line

- $\circ \quad p_{track} > 350 \, MeV$
- $p_{track} > 150 MeV$

— Rel.statistical uncertainties

—— 10% line

- \circ +5% Fragmentation
- -5% Fragmentation

— Rel.statistical uncertainties

—— 10% line

 \circ HERWIG

— Rel.statistical uncertainties

—— 10% line

- Fraction EMC +0.025
- Fraction EMC -0.025

— Rel.statistical uncertainties

- $\bigcirc \quad E_\gamma + 2\%$
- *E*_γ -2%

—— 10% line

- \circ δZ fit range 1.0
- δZ fit range 0.6

— Rel.statistical uncertainties

—— 10% line

- Ο δ*R* 0.3
- δ*R* 0.1

Systematic uncertainties $x_{\gamma} < 0.8$

— Rel.statistical uncertainties

—— 10% line

 \bigcirc upper sum

lower sum

— Rel.statistical uncertainties

—— 10% line

- \circ -15% resolved
 - +15% resolved

— Rel.statistical uncertainties

—— 10% line

 \circ variation up

variation down

- $\circ |Z_{vertex}| \leq 45$
- $|Z_{vertex}| < 35$

— Rel.statistical uncertainties

—— 10% line

- $\circ \quad p_{track} > 350 \, MeV$
- $p_{track} > 150 MeV$

— Rel.statistical uncertainties

—— 10% line

- \circ +5% Fragmentation
- -5% Fragmentation

----- Rel.statistical uncertainties

—— 10% line

 \circ HERWIG

— Rel.statistical uncertainties

—— 10% line

- Fraction EMC +0.025
- Fraction EMC -0.025

— Rel.statistical uncertainties

- $\bigcirc \quad E_\gamma + 2\%$
- *E*_γ -2%

—— 10% line

- \circ δZ fit range 1.0
- δZ fit range 0.6

— Rel.statistical uncertainties

—— 10% line

- Ο δ*R* 0.3
- δ*R* 0.1

