

Photoproduction of isolated photons with a jet at HERA. Status report

Peter Bussey, David Saxon, Ian Skillicorn, <u>Andriy Iudin</u>, Nataliia Kondrashova, Volodymyr Myronenko

(University of Glasgow / Kyiv National University "Kyiv Polytechnic Institute" / National University of Kyiv-Mohyla Academy)

> ZEUS Physics meeting Hamburg, 20 November, 2013

Introduction

A prompt photon is one that emerges directly from a perturbative QCD process. LO diagrams are illustrated above:
(a) direct, in which the entire incoming photon interacts,
(c) resolved, in which a parton from the photon interacts. Higher order pQCD processes occur and also
"fragmentation" processes (b, d). Motivation

- Prompt (isolated, high p_T) photons are a useful tool to study and test QCD.
- Their measurements are more precise than hadronic jets.
- Prompt photons can be used to measure and constrain the pdfs of proton and photon.
- Looking at two new variables:
 - x_p measures longitudinal momentum transfer from proton sensitive to PDF and modelling of parton in proton interesting to see LMZ description of this with k_r-factorisation.
 - $-\Delta \Phi$ the azimuthal difference between the photon and the jet, sensitive to higher order processes.
- Study of two regions of x_{γ} longitudinal momentum transfer from photon, resolved- and direct-enhanced:

$$x_v < 0.7$$
 and $x_v > 0.8$

Data Samples

Data: HERA II 04p, 04/05e, 06e, 06p, 07p (Common Ntuples v06d) 374 pb⁻¹ *MC Signal*: 04p, 05e, 06e, 06p, 07p (CN v06b PYTHIA) Direct, Resolved *MC Background*: 04p, 04/05e, 06e, 06p, 07p (CN v06b PYTHIA - Heavy Flavour Group, Jet – Sebastian's + Filtered) Direct, Resolved

Cuts

Event Selection Trigger HPP16 on $0.2 < y_{JB} < 0.7$ | Zvtx | < 40 cm |BCAL time| < 10 ns $Cal p_T < 10 \text{ GeV}$ No SINISTRA electron with Prob > 0.9 and Yel < 0.7

Prompt Photon Selection Tufo[0] =31 -0.7< η^{zufo} <0.9 $6 < E_T^{zufo} < 15 \text{ GeV}$ E^{zufo}/E^{jet} >0.9 ZufoEemc/ZufoEcal>0.9 track isolation in cone 0.2

 $x_{\gamma} < 0.7 \text{ or } x_{\gamma} > 0.8$

Jet Selection -1.5< η^{jet} <1.8

 $4 \!\!\!\! < \!\!\! E_T \stackrel{jet}{=} \!\!\! 35 \text{ GeV}$

Truth level selection

 $Q^2 < 1 \text{ GeV}^2$

 $0.2 < y_{JB} < 0.7$

Particle type 29

-0.7< $\eta^{particle}$ <0.9

6<E_T^{particle}<15 GeV

Eparticle/Ejet>0.9

Control plots. All X

 $x_{p} = (E_{T}^{Y} * \exp(\eta^{Y}) + E_{T}^{jet} * \exp(\eta^{jet})) / (2^{*}E_{p})$ $\Delta \Phi = (\Phi_{\gamma} - \Phi_{jet}) * 180 / \pi$

Control plots use the number of fitted photons (Signal from Data) and compare them with signal MC.

Comparison between analyses ZEUS ZEUS

10³ dơ/dx_p^{obs} (pb 10² AI 374 pb⁻¹ IOS 374 pb⁻¹ 10 PJB 374 pb⁻¹ 1 γ + jet 10^{-1} 0.05 0.06 0.07 0 0.01 0.02 0.03 0.04 \mathbf{x}_{p}^{obs}

ZEUS

Good agreement between three analyses.

Differences can be attributed to different approaches to acceptance calculation, selection, spline for photon definition and use of corrections.

Theory

FGH (Fontannaz, Guillet and Heinrich) - the LO and NLO diagrams and the box-diagram term are calculated explicitly. Fragmentation processes calculated in terms of fragmentation function.

LMZ (Lipatov, Malyshev and Zotov) - k_{T} -factorisation method makes use of unintegrated parton densities in the proton. Fragmentation terms are not included. The box diagram is included together with 2 \rightarrow 3

subprocesses:

$$\begin{split} &\gamma(k_1) + q(k_2) \rightarrow \gamma(p_1) + g(p_2) + q(p_3) \\ &\gamma(k_1) + g^*(k_2) \rightarrow \gamma(p_1) + q(p_2) + qbar(p_3) \\ &\gamma(k_1) + g(k_2) \rightarrow \gamma(p_1) + g(p_2). \end{split}$$

A case with $gq \rightarrow \gamma q$ process included is examined (denoted as GQ).

Cross sections. $x_v < 0.8$

Motivation: check that sum x_v [0.;.8] + [.8;1.]= [0;1]

Theory shown is for $x_{y} < 0.7$

Difference between cross section in all x-gamma and the sum of $x_{\gamma} < 0.8$ and $x_{\gamma} > 0.8$ is within errors.

Different PDF for proton in FGH calculation ZEUS ZEUS

Results look similar to CTEQ6.

Cross sections. X_{p}

ZEUS

O

0.01

Χ

γ

0.02

0.03

0.04

0.05

0.06

0.07

 \mathbf{x}_{p}^{obs}

Reasonable description of data by predictions in all $x_{\underset{\boldsymbol{\gamma}}{\boldsymbol{\gamma}}}$ regions.

Here and on following plots:

- hadronisation corrections are applied to theory.
- inner and outer error bars statistical uncertainties and statistical and systematic in quadrature.

Cross sections. $\Delta \Phi$

dơ/d∆Փ (pb/deg)

ZEUS

Reasonable description by FGH, however there is an overestimation in the next-to-last bin for $x_v < 0.7$.

γ

FGH tends to overestimate and LMZ underestimate $x_v < 0.7$ region.

13

FGH tends to overestimate and LMZ underestimate x_{y} < 0.7 region.

 $gq \rightarrow \gamma q$ process added. LMZ underestimation is reduced.

 $gq \rightarrow \gamma q$ process added. LMZ underestimation is reduced.

 $gq \rightarrow \gamma q$ process added. LMZ underestimation is reduced.

Conclusion

Control plots using number of fitted photons and compare them with signal MC presented.

Data cross sections in $x_v < 0.8$, FGH MSTW08 checked, LMZ predictions added.

Both models describe the direct region well. FGH (LMZ) overestimates (underestimates) the resolved region cross section.

Future plans

Reach agreement on corrections.

Finish studying HERWIG systematic.

Trigger study, DIS contamination.

Backup slides

Control plots. $X_{\gamma} < 0.7$

Control plots. $X_{y} < 0.7$

Control plots. $X_{y} > 0.8$

Control plots. $X_v > 0.8$

Cross sections. $x_v < 0.8$

ZEUS

Cross sections. $x_v < 0.8$

ZEUS

