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Abstract

The ATLAS Tag Database is an event-level metadata system, designed to allow efficient
identification and selection of interesting events for user analysis. By making first-level cuts using
queries on a relational database, the size of an analysis input sample could be greatly reduced and thus
the time taken for the analysis reduced. Deployment of such a Tag database is underway, but to be
most useful it needs to be integrated with the distributed data management (DDM) and distributed
analysis (DA) components. This means addressing the issue that the DDM system at ATLAS groups
files into datasets for scalability and usability, whereas the Tag Database points to events in files. It
also means setting up a system which could prepare a list of input events and use both the DDM
and DA systems to run a set of jobs. The ATLAS Tag Navigator Tool (TNT) has been developed to
address these issues in an integrated way and provide a tool that the average physicist can use. Here,
the current status of this work is presented and areas of future work are highlighted.
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1. Introduction
ATLAS, one of the general-purpose experiments at the Large Hadron Collider (LHC) at the CERN,
the European Laboratory for Particle Physics, is expected to record raw data at a rate of 200 Hz,
giving about 2× 109 events per year. As set out in the ATLAS Computing Model [1], raw events will
have a size of 1.6 MB each. Processing of the raw data into reconstructed events gives Event Summary
Data (ESD) files with an event size of about 1 MB; these are then used to produce Analysis Object
Data (AOD) events, which contain physics informantion suitable for use in analysis, and which will
be about 100 kB each in size. These will generally be stored in files of size 2 GB or larger.

To allow efficient identification and selection of interesting events for users to analyse, ATLAS is
deploying an event-level metadata system, which has summary or ‘tag’ physics data for each event.
This tag data can be written in two forms - in ROOT [2] files and as entries in a relational database.
The file-based tags are useful as indices to the real data, allowing the position of an interesting event
in a file to be located, for example. The relational database-based tags, though, enable the querying
of tag data so that a user should be able to select events according to their analysis criteria, find the
data files of interest, and be able to go directly to these interesting files and events rather than running
their analysis on the whole set of available ESD or AOD.

With a budget of 1 kB per event, such a relational database would host about 2 TB of new data
each year. While this is small relative to the overall scale of ATLAS data, having an efficient and
scalable database of this size is still a challenge. A series of performance and scalability tests are being
performed, seeking the best design for such a database, and the results of some of these tests can be
found in [3].

Another challenge is the integration of such a database with the other software components used by
ATLAS, in such a way as to let users select the events and files of interest and then run their analysis
on these events at an appropriate grid site, sending jobs to the data wherever possible. This paper
first gives a brief description of the Tag Database itself, then of the Distributed Data Management
and Distributed Analysis systems used by ATLAS, highlighting the issues involved in integrating the
Tag Database with these systems. The development of a solution, the ATLAS Tag Navigator Tool
(TNT) is then described, some test results are presented and future plans are outlined.

2. The ATLAS Tag Database
The ATLAS Computing Model [1] describes a multi-tiered system in which CERN is a central ‘Tier-
0’ site, with regional ‘Tier-1’ centres around the world, each of which has a number of more local
‘Tier-2’ sites associated with it. It is planned to have copies of the file-based tags on all tiers. For
the relational tags, i.e. those stored in a relational database, there will be a central global database
at CERN, hosted on Oracle. To ease the load on this central service, the database will be replicated
to various other Tier-1 and Tier-2 sites. Both Oracle and MySQL may be used as database backends,
depending on the capabilities at the sites. The exact distribution model for the Tag Database is still
under discussion, however.

The central Tag Database is generated from the file-based tags, which are produced alongside the
Analysis Object Data (AOD) in the ATLAS production system. Both types of tag data are therefore
exactly equivalent, the advantage of a database being that it can be queried. The content of the tags
can be divided into six types of attribute. These are:

• Event quantities - attributes that apply to the whole event, such as run number, event number,
luminosity and so on

• Data quality - the status of the various detectors, with a boolean ‘Good for physics’ if all were
satisfactory

• Physics objects - electrons, muons, photons, taus, jets and their attributes

• Physics or Performance Group attributes - space for each physics group to define its own attributes

• Trigger information - for both low and high-level triggers.

• Pointers to event data - references to the AOD, ESD and RAW data files which contain the event,
software version used and so on

A full list of the current tag attributes may be found in [4], although some of them are likely to change
over time as real data-taking begins and user access patterns become apparent. Users may perform



queries using any of these attributes to find the events they are interested in. Particularly relevant to
this paper is the AOD reference, which is part of the collection information. In the relational database,
this is linked to the GUID (Globally Unique Identifier) of the AOD file which contains the event, and
this GUID may be returned by a query.

A series of Tag Databases have been deployed at CERN using Monte Carlo data, to allow testing
of the database by developers and physicists before the LHC is turned on and real data-taking begins.
The largest of these test databases was 1 TB, which was limited by the database resources available.
The most realistic database constructed to date, in terms of tag content, contains (at the time of
writing) 1.9 GB of data and 1.5 GB of indices, which, although much smaller than what will be
required when data-taking starts, allows testing of the functionality and interactions with external
components. This is the database which was used for the tests presented in Section 5. A web query
interface has been developed [5], allowing users to browse the database in an intuitive way and to
download the results of their query as a ROOT file.

3. The ATLAS Distributed Data Management and Distributed Analysis Systems
ATLAS makes use of three distinct computing grids to process and analyse its data: the LHC
Computing Grid (LCG), the Nordic DataGrid Facility (NDGF), and the Open Science Grid (OSG).
This is a complex environment in which to manage data and perform distributed analysis, and so
a brief overview is given here of some of the systems developed to handle this, with which the Tag
Database must interact.

3.1. The Distributed Data Management System
The Distributed Data Management (DDM) system, the implementation of which is known as Don
Quijote 2 or DQ2 [6], was developed to handle the movement and cataloguing of ATLAS data files
across these three grids. Each grid has its own set of middleware for low-level file cataloguing, storage
and movement, so DQ2 provides a common interface for these services. It relies on the concept of
datasets. A dataset is a set of files, with certain metadata associated with it such as version number,
location, whether more files can be added or not, and many others. The dataset is the unit of data
transfer in the DDM system; users are not able to handle files at the individual level in DQ2, although
they can do so using the underlying grid tools.

Datasets are transferred between sites using a mechanism of subscriptions. Each participating site
has a set of site services running, and when a site is subscribed to a particular dataset, the site services
are responsible for transferring that dataset and keeping it up-to-date should new files be added. A
set of central catalogues keeps track of the files in each dataset, the dataset locations, identifiers and
subscriptions.

3.2. The Distributed Analysis System
The ATLAS Distributed Analysis system [7] aims to make the computing resources of the three grids
available to physicists for their analysis, while hiding the complexity which is involved. There are
several tools which are being developed for this, including PANDA [8] and GANGA [9]. PANDA is
a job submission and management system developed primarily for OSG but now extended to include
LCG sites. GANGA is a user interface for job definition and management on the grid, with a plugin
architecture which allows it to run on various backends, developed by ATLAS in conjunction with the
LHCb experiment. As the interfacing of the Tag Database with the Distributed Analysis tools was
done through GANGA (Section 4.3), a short description is given here.

In GANGA, everything is constructed around objects known as GANGA jobs. Each GANGA job
must have defined an application to run and the backend system on which to run it. Most jobs will
also have an input dataset of files to read and an output dataset to contain the results. Jobs can also
have a splitter defined, which gives a rule for dividing the job into a set of smaller jobs which can
be run in parallel, and a merger, which gives the rule for re-combining the output from the sub-jobs.
Each of these components of a job (application, backend, input, output, splitter and merger) can be
implemented in various ways, as different plugins. ATLAS users, for example, can use the Athena()

application, which gives access to Athena, the ATLAS analysis framework. Examples of available
backend plugins are Local(), where the job is run on the local host; LCG(), where it is submitted to



LCG; and NG(), where it is submitted to the NDGF. All the ATLAS-specific parts of GANGA are
kept in a package called GangaAtlas.

Users may interact with GANGA through its own enhanced Python shell, known as CLIP; through
batch scripts; or through a graphical user interface. When all the necessary inputs to a job have been
defined and the job submitted, GANGA then performs all the necessary monitoring and handling of
output.

3.3. Issues involved in interfacing with these systems
In order to integrate the Tag Database with the wider ATLAS infrastructure, and the above
components in particular, there were several issues to be considered. One of the main problems
was that while the DDM system emphasises the use of datasets and does not work at the file level,
the Tag Database has no knowledge of datasets and only contains references to data files. To use the
Tag Database to locate files with events of interest and then use these in an analysis therefore requires
some bridging between the two systems in order to find which datasets contain these events.

In interfacing with the distributed analysis system, it was decided to integrate first with GANGA
rather than PANDA or other tools, due to GANGA’s modular design and its plans to include access
to PANDA through another plugin. It was found that while GANGA already had functionality for
analysis using file-based tags, using relational tags was not supported and it was necessary to develop
a new GANGA plugin for that.

4. Design and Development of the Tag Navigator Tool
In view of the systems described above, a tool was developed to allow use of the Tag Database in
an integrated way. This has been named the Tag Navigator Tool (TNT); it was developed first as a
standalone set of Python scripts and then integrated with GANGA as a plugin. In this section, an
example is first given to illustrate the motivation for the design. Descriptions are then given of both
the standalone version and the GANGA plugin.

4.1. An example use case
The chief use case for TNT is that of a physicist, wishing to query the Tag Database to find some
interesting events and then have some analysis run on those events using Athena, without having to
know about where these events reside. The steps required would be:

(i) Physicist decides on query, perhaps refined using the database web interface [5], and prepares a
file with job options for Athena

(ii) Query, job options and other parameters are submitted to TNT

(iii) TNT queries Tag Database with given query and gets list of matching events

(iv) TNT finds which files and datasets these events belong to, and where they are

(v) TNT prepares a series of LCG jobs, one for each input file

(vi) Jobs are submitted to LCG and TNT waits until they are all done

(vii) Output is either returned to the user or registered as a new dataset, accessible with DQ2, according
to user’s preference.

A variant on the above case would be when the user has already performed their query on the
database and has the matching events available to them in a ROOT file. The web interface to the
Tag Database, for example, allows this to be done. In that case, steps (i) and (iii) should be omitted
from the use-case above. The implementation of TNT described below is based on these use cases.

4.2. Standalone version
The first version of TNT was developed as a set of shell scripts, which were later translated into
Python. As it runs independently of other distributed analysis software, it is here called ‘standalone
TNT’.

This implementation is a wrapper around various existing tools. These are: the utilities developed
by POOL [10] to handle “Collections”, of which tags are an instance; grid job submission and



Figure 1. Components and their interactions in standalone TNT

management tools; and DQ2 tools for handling datasets. A diagram illustrating the various
components and their interactions is shown in Figure 1.

In the diagram, the python components (TNT.py, GuidExtractor.py, GenerateCatalogs.py and
generateLCGJob.py) are those specific to TNT. The numbers indicated in the description below refer
to those on the diagram. Following the steps defined in the use case in the previous section, all the
user’s query-, Athena- and grid-related parameters are first defined (1) in a configuration file, called
TNT.conf in the diagram. The main executable, TNT.py, is then called and the process is started.
TNT uses a POOL-supplied utility to pass the user’s query to the database (2) and copy the relevant
events locally as a ROOT file (3). In the diagram, this is called events.root. A customised version
of one of the POOL utilities was written to iterate through this collection of events and split them
into a number of sub-collections (4), according to which AOD file they belong to. There can also be
a minimum number of events specified by the user, so if the number of relevant events in one file is
lower than the minimum, events from another file or files will be included in the same sub-collection
until the minimum is reached. Files are not split between sub-collections, however; all the splits are
on file boundaries.

Next, the GuidExtractor script is called (5), which addresses the gap between the dataset-oriented
DDM system and the file-oriented Tag Database. It looks up the relevant DQ2 catalogues, via their
API, first to map the GUID of each AOD file to the latest version of a dataset in which it is contained,
and second to list the files in that dataset and match the correct Logical File Name (LFN) to the
GUID. After this, an XML-based file catalogue is generated for each sub-collection (6), cataloguing
the GUID, LFN and Physical File Name (PFN) of where the file will be when it is copied to the
worker node. This is later sent with the grid job so that processes running on the grid worker nodes
can locate the correct files. For each sub-collection, the generateLCGJob.py script then produces 2
files: the executable script which will be run on the worker node, and the JDL file with the correct
parameters for submission to LCG (7).

Each job is then submitted (8), taking with it the sub-collection of tag events corresponding to the
AOD it is to analyse, the Athena job options file it is to run and the XML file catalogue which will
enable it to locate the correct AOD files. The LCG Resource Broker decides where the job should run;
TNT polls the Resource Broker to check job status until all the jobs have finished running, resubmitting
failed jobs (unless the failure was failure of the analysis). After a job has finished running, any output



files can either be returned to the user, or registered as a new dataset in the DQ2 catalogues (9).
In the case where a user already has a file with tags they want to use, this can simply be done by

setting some parameters appropriately in the configuration file.
The main limitation to standalone TNT at the moment is the reliance on LCG as the grid backend

- there is no option to use either of the other grids or a local machine or batch farm.

4.3. GangaTnt plugin
As it is expected that much ATLAS analysis work will be done through GANGA, it is sensible to
include access to the Tag Database through GANGA as well as in a standalone version. This also
makes use of the existing job submission and handling infrastructure developed in GANGA, and
removes the dependency on LCG, as GANGA backend plugins to other grid types can be used as
they become available. The greater maturity of the GANGA project and growing familiarity of users
with it would also facilitate uptake by users. The plugin, known as GangaTnt, is therefore expected
to be the more useful instantiation of TNT and its use is encouraged in preference to the standalone
version.

The GangaTnt plugin was prepared by adapting the relevant parts of TNT while leaving out the
parts for which GANGA already provided functionality. In GANGA, there is a family of Splitter

classes, which tell Ganga how to split up a job into a number of sub-jobs. Much of the development of
GangaTnt consisted of writing a new Splitter, TNTJobSplitter, which included the Tag database
lookup and then the splitting of the returned events (and hence the jobs) along AOD file boundaries,
in the same way as it is done in the standalone version.

The main components of GangaTnt and their interactions with the Tag Database and GANGA are
shown in Figure 2. The user may interact with GANGA through its own command-line interface or

Figure 2. Components and their interactions in GangaTnt

in batch mode via a script (1), in the same way as for any GANGA job. The TNTJobSplitter class
is instantiated (2) and the selection of events made from the database (3) and returned to the local
area. The set of events returned is split up (4) and GuidExtractor called to get the appropriate list
of GUIDs. As in the standalone case, it then looks up DQ2 (5) to match the GUIDs to the datasets
to which they belong and the corresponding LFNs. The dataset locations are also found and used to
tell GANGA the best sites to send the jobs. The splitter then prepares the correct number of jobs (6),
which are then submitted to GANGA (7). GANGA then takes care of submitting them to the correct
backend, according to the user’s choice. The default, which should be adhered to wherever possible,



is to send the sub-jobs to the sites where the AOD files are already present, to avoid unnecessary file
transfers across the grid. GANGA then monitors their status, collects the output, and either returning
it to the user or, as is more usual, registers the output files in a new dataset registered in DQ2 (9).
They can then be manipulated using GANGA, DQ2 or native grid tools, as required.

If a user has already performed a query and got some events in a ROOT file, this can be
analysed using the existing functionality GANGA has for ATLAS tag files. GangaTnt is therefore
complementary to the rest of the GangaAtlas package; together, they can cover all sorts of analysis
where there is pre-selection using tags.

5. Some Performance Measurements
TNT, in its standalone implementation and as GangaTnt, has successfully been tested using the
existing Tag Database at CERN. To provide some preliminary measurement of the performance
of GangaTnt, some simple tests have been carried out, comparing an analysis with pre-selection
using tags to analysis performed just on the AOD. A series of tests was first conducted to give an
initial understanding of the performance of using tags independently of the wider distributed analysis
framework, followed by some tests using GANGA in the LCG environment.

For all the tests described below, the analysis used was a simple reconstruction of the Z mass from
the Z → e, e process, with events which have been loaded into the central Tag Database at CERN.
Each result shown in the plots is the average of three measurements.

5.1. Tests in the Local Environment
First, the analysis was done on a single AOD file, initially without using tags and then with event
selection using the corresponding file-based tag. Both files were present on the local disk. For this
single file, the time taken to run Athena on the whole file was measured, selecting events electron
pT > 20GeV and |η| < 2.5, which is roughly 10% of the sample. The same analysis was then
performed using the tag file to pre-select a varying percentage of the events, which were then analysed
in their AOD form. The results are shown in Figure 3. The CPU time is shown rather than the real
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Figure 3. Analysis time with varying percentage of pre-selected events

time taken, to avoid any contribution to the real time from competing processes on the host machine.
The horizontal line, showing the time taken without tags, has no data points because no percentage
pre-selection is being made - it is there as a baseline for easy comparison. This time does not vary
significantly as the AOD selection is changed in any case. The graph shows that if the percentage
of events selected using tags is less than about 60%, using tags can give a significant improvement
in analysis time. With tighter selection, the reduction in time increases, so for a 10% selection the
analysis time is reduced by about 50%. For very loose selections where 60-100% of the events are
passed by the tag, the overhead from navigating between tag and AOD makes it slower than doing
the analysis without tags.

Next, the time taken for the same analysis was measured for an increasingly large set of input files
and, correspondingly, events. Each file contained about 4-5000 events. Again, all files were present
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Figure 4. Analysis time with varying number of AOD files. Real time (top left), CPU time (top
right), and ratio of times with and without file-based tags (bottom).

on local disk. The analysis was done first without using any tag pre-selection; second, using file-based
tags; and third, using the Tag Database. While the same input files were used for the first two sets
of analysis, the nature of the Tag Database meant that the finest granularity available was at the
dataset level. That is, each dataset loaded into the database has a different run number and thus
can be found by a simple query, but there is no way to query for a particular file. Thus, while most
of the files used were the same as in the previous tests, some were slightly different. The first two
plots in Figure 4 are therefore shown in terms of increasing number of events. The third plot, which
shows the ratio of times with and without using tags, only uses the file-based tags and is shown in
terms of increasing number of files. These plots show that as the number of input events increases,
the performance gained by using tags increases, so with 10 AOD files and almost 50000 events, using
tags is over 4 times faster in CPU time alone. In general, this increase is linear with the number of
events, although there may be some non-linearity in the real time taken without tags. More data is
needed to quantify this and to explore why there is this change in the ratio of analysis speeds. As file
sizes are expected to increase, the results at higher numbers of events are more realistic, and extension
of the tests to even higher numbers is needed. There was little significant difference in performance
seen between the two kinds of tag, although further work is needed to compare these in more detail.
As the database is resident at CERN, for example, and the tests were performed on a machine in the
CERN LAN, it would be interesting to see the impact of queries over a WAN.

5.2. Tests in the Distributed Analysis Environment
Having performed the previous tests in a local environment, some tests were then made running this
analysis in the distributed analysis environment through GANGA. Two files from a single AOD dataset
were used as input, and GANGA was set to send the jobs to LCG sites where this AOD dataset was
already present. For each job, two time measurements were taken on the worker node on which it ran:
the time for the script to set up, including the fetching of any files if necessary (the setup time), and
the time for the analysis to run (analysis time). The same cuts were made as in the previous section,
electron pT > 20GeV and |η| < 2.5.

First, the time for the analysis without AOD was measured, then the time for the analysis using



the tag file datasets as input to GANGA. No job splitting was done. Finally, the GangaTnt plugin
was used. In this case, as explained in Section 4.3, the query to the Tag Database is performed from
the local host before the jobs are submitted to LCG. A minimum number of events per job was set
so that each job processed both the input files, rather than splitting into parallel jobs, to allow direct
comparison of the results.

The results are shown in Figure 5. Looking first at the setup times on the worker node, it is seen

Setup Time                                   Analysis Time

T
im

e 
(s

)

0

50

100

150

200

250 No tags

File-based tags

Relational tags

Figure 5. Comparison of setup and analysis times on worker nodes with Ganga

that the time without tags and the time with relational tags is very similar, while the time with
file-based tags is much higher. However, this is due to the fact that at present, the tag files are not
being replicated together with AOD files. This means that while GANGA sent the jobs to sites with
the AOD files, the tag files were not present and were therefore downloaded to the worker nodes from
a remote site. It is expected that in future, the tag files will be present at all sites and this loss of
time will not occur, so all setup times should be similar.

Second, looking at the analysis times, it is clear that using the tags was about twice as fast as doing
the analysis without tags. Again, there is little difference between the two tag models. There may be
a small increase in speed with the GangaTnt model, which could be due to the selection having been
made previously on the database; however, this is not a significant difference in terms of the overall
process. Separate measurements of the queries executed on the database show query times of about
2 seconds; this, together with other lookup overheads in GangaTnt, counterbalance any performance
gain on the worker node.

In this simple test, the gain in analysis time from using tags gave only a small gain in the total
time taken from job submission to completion, because there can be long wait times between job
submission and beginning to run on a worker node. However, with larger analyses, the results in the
previous section show that the impact of using tags will be considerably higher.

In summary, these results show that the GangaTnt model and the standard GANGA model of using
tags in analysis perform equally well in general, although the GangaTnt approach has advantages in
the case where the correct tag files are not present at the site the job is running at. Both are useful
in different situations: the ordinary GANGA method if the user knows the tag files they need and
knows they are at the site, or already has them locally, and GangaTnt when a query to the relational
database is needed or the files are not widely distributed.

6. Conclusions and Future Work
TNT and GangaTnt have been developed to enable integration of the ATLAS Tag Database with
the distributed data management and distributed analysis frameworks. An initial series of tests
have been performed which show that using tags for pre-selecting events for analysis gives about 50%
improvement in analysis time for a 10% selection on a single file of about 5000 events; this improvement
increases as the number of input events is increased. Within the distributed analysis framework, using
standard GANGA Tag analysis and GangaTnt give similar gains in performance compared to analysis
without tags, and both are useful in different circumstances.



Further work is required to better understand the effects of using tags with large numbers of
input events; the effect of file I/O; and the differences between file-based and relational tags. A more
extended series of tests to this end is planned. In terms of development, the ATLAS Tag Database will
continue to grow as data is added, and GangaTnt will continue to evolve as feedback is given by users
and as the data management and analysis components develop in the approach to LHC data-taking
in 2008.
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