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Abstract

The Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, will produce unprece-
dented volumes of data when it starts operation in 2007. To provide for its computational needs, the LHC Computing
Grid (LCG) will be deployed as a worldwide computational grid service, providing the middleware upon which the physics
analysis for the LHC will be carried out. In 2003, versions of this middleware were deployed which were based on the
middleware produced by the European Data Grid project (EDG). In 2004 the LCG-2 release, which consisted of the EDG
middleware with some minor modifications, was deployed for use by the LHC experiments.

A series of data challenges by these experiments were the first real experiment production use of LCG. During the
course of the data challenges, many issues and problems were exposed which had not shown up in more limited tests.
The deployment, service and development teams worked closely with the experiments to understand these issues and while
some of the problems were solved during the data challenges, others exposed fundamental problems with the middleware as
deployed in LCG-2.

One of these fundamental problems was the performance under real load of the catalog component provided by EDG,
the Replica Location Service. To solve these problems a new component was designed, the LCG File Catalog (LFC). The
LFC moves away from the Replica Location Service model used in previous LCG releases, towards a hierarchical filesystem
model which is more like a UNIX filesystem. It also adds missing functionality which was requested by the experiments.

This paper presents the architecture and implementation of the LFC and evaluates it in a series of performance tests,
with up to forty million entries and one hundred requesting threads from multiple clients. The results show good scalability
up to the limits of these tests, and compare favourably with other Grid catalog implementations.
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1 Introduction

The 2004 series of LHC experiment data challenges were
the first to use the LCG-2 set of middleware tools [13] in a
realistic environment. The CMS (Compact Muon Solenoid)
collaboration, for example, aimed to reach a complexity of
about 25% of that predicted for the initial running of the
LHC. Feedback from the experiment groups after the data
challenges highlighted various problems and limitations, as
well as differences between the expected and actual usage
patterns.

With particular reference to the data management com-
ponents of LCG-2, it became apparent that the file catalog
infrastructure, which consisted of the EDG Local Replica
Catalog (LRC), Replica Metadata Catalog (RMC) (which
together form the Replica Location Service or RLS) and
Replica Manager, was too slow both for inserts and for
queries [9]. Queries involving both the LRC and RMC were
particularly slow [12]. Missing functionality identified in-
cluded lack of support for bulk operations and transactions.
It also became clear that queries were generally based on
metadata attributes and were not simple lookups of a file’s
physical location. On the other hand, users did not use the
web services approach in the way which had been antici-
pated when the EDG components were developed. They
were implemented such that a remote procedure call (RPC)
was performed for each low-level operation; users, how-
ever, wanted to send higher-level or multiple commands in a
single RPC. As this was not available, the cumulative over-
heads from a large number of low-level RPCs led to consid-
erable loss of performance. Also, although a C++ API was
available, command-line tools were available only in Java
which led to added loss of performance due to the overhead
in starting up the Java Virtual Machine with each call.

In response to this feedback, a proposal was put for-
ward, accepted and subsequently implemented to develop
the LCG File Catalog (LFC) as an immediate replacement
for the EDG catalogs. Initial performance tests of the LFC
were presented in [2], and this paper presents the results of
full testing. The RLS framework was designed jointly by
Globus and EDG [8], then two different implementations
were produced; here, the LFC performance is compared to
that of both the EDG RLS [10] and Globus RLS [6].

The structure of this paper is as follows. First, a de-
scription of the architecture, implementation and main fea-
tures of the LFC is given. The methodology and results
of the performance tests are then shown with some discus-
sion of their significance. Some pointers to future work are
then given before discussing related work, summarising and
drawing conclusions.

2 LFC Architecture

The LFC has a completely different architecture from the
RLS framework. Like the EDG catalog, it contains a GUID
(Globally Unique Identifier) as an identifier for a logical
file, but unlike the EDG catalog it stores both logical and
physical mappings for the file in the same database. This

speeds up operations which span both sets of mappings. It
also treats all entities as files in a UNIX-like filesystem, and
is thus closer in concept, logically, to the AliEn File Cata-
log [14] (see Section 7). The API is designed to mimic a
UNIX filesystem API, with calls which are intuitive to the
user, such as creat, mkdir and chown.

The main entities of the LFC design are shown in Fig-
ure 1. There is a global hierarchical namespace of Logi-
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Figure 1: Components of the LFC.

cal File Names (LFNs) which are mapped to the GUIDs.
GUIDs are mapped to the physical locations of file repli-
cas in storage (Storage File Names or SFNs). System at-
tributes of the replicas (such as creation time, last access
time, file size and checksum) are stored as attributes on the
LFN, but user-defined metadata is restricted to one field, as
the authors believe that user metadata should be stored in
a separate metadata catalog. Multiple LFNs per GUID are
allowed as symbolic links.

Bulk operations are supported, with transactions, and
cursors for handling large query results. As there is only one
catalog, transactions are possible across both LFN and SFN
operations, which was impossible with the EDG RLS. In
case of momentary loss of connection to the catalog, time-
outs and retries are supported.

Authentication is by Grid Security Infrastructure (GSI),
which will allow single sign-on to the catalog with users’
Grid certificates. The client domain name is mapped inter-
nally to a uid/gid pair which is then used for authorization.
It is also planned to integrate VOMS (the Virtual Organisa-
tion Membership Service which was developed in EDG) as
another way of authentication, mapping the VOMS roles to
multiple group IDs in the LFC. The uid/gid pairs are used
for authorization by means of the file ownership informa-
tion which is stored in the catalog as system metadata on the
LFN. Standard UNIX permissions and POSIX-compliant
Access Control Lists (ACLs) on each catalog entry are sup-
ported.

3 LFC Implementation

The LFC is implemented entirely in C and is based on the
CASTOR [5] Name Server code. There is no web ser-
vices implementation, which allows integration with exter-
nal catalog interfaces such as gLite FiReMan [7]. It runs as
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a multi-threaded daemon, with a relational database back-
end. Currently, both Oracle and MySQL are supported
as database components. The client may also be multi-
threaded.

Bulk operations are implemented inside transactions.
The transaction API is also exposed to the user, both to al-
low multiple operations inside a single transaction and to
allow user-controlled as well as automatic rollback.

The GSI security implementation depends on an external
library from CASTOR and is still being integrated, but the
permissions infrastructure described above has been imple-
mented. VOMS integration is also pending.

Clients currently exist for GFAL, POOL and lcg utils.
GFAL is the Grid File Access Library, a library developed
by LCG to give a uniform POSIX interface to local and
mass storage on the Grid; POOL is the Pool of persistent
Objects for LCG, a framework for the LHC experiments
to navigate distributed data without knowing details of the
storage technology [12]; and lcg utils is the command-line
interface and API for user access to LCG [2].

4 Performance Test Methodology

For the performance tests, requests were submitted to the
LFC via multi-threaded client programs written in C. Each
test program allowed the user to specify the number of op-
erations to perform (inserts, deletes, etc), the number of
threads to be used, and other options relevant to each spe-
cific test. The C programs were then wrappered by Perl
scripts which ran each batch of tests. Typically, each opera-
tion was performed several thousand times in the C program
and the mean time taken; this was then called several times
from the Perl script and an overall mean taken. Any entries
added to the LFC were removed before the next test run.

5 Performance Test Results

In this section, the results of the performance tests con-
ducted on the LFC are presented, first with a single client
and then with multiple clients connecting to the same server.
The server was a dual Pentium III 1 GHz processor with 512
MB of memory, with an Oracle database back end which
was running on a dual Intel Xeon 2.4 GHz machine. The
server operating system was Red Hat Linux 7.3 and for
the majority of these tests it was configured to run with 20
threads.

For the single client tests, the client machine was a Pen-
tium III 853 MHz processor with 128 MB of memory, run-
ning Red Hat Linux 7.3. Server and client machines were
connected by a 100 Mb/s local area network.

For the multiple client tests, 10 Pentium IIIs were used as
clients. Each had 1 GHz CPU, 512 MB memory and were
running CERN Scientific Linux 3.0.3. The server was as
for the single client tests, and all the machines were on the
same 100 Mb/s local area network.

A comparison of the hardware used for these tests with
that used in the EDG and Globus RLS tests, in terms of
the SPEC CINT2000 values [15] of the machines used, is

shown in Table 1. Dual CPUs are indicated by a 2× in front
of the CINT 2000 value for a single CPU. When comparing
the results in Sections 5.1 and 5.2, the difference in values
for the server in particular should be kept in mind.

LFC Globus RLS EDG RLS

Server 2 × 420 2 ×810 2 × 420
Single Client 420 2 × 220 2 × 420
Multiple Clients 400 2 × 220 2 × 420

Table 1: Approximate SPEC CINT2000 values for test ma-
chines.

5.1 Single Client Tests

5.1.1 Add tests

Starting from a near-empty database, the mean time to add
a single entry was measured as the number of entries in the
LFC increased, up to about 40 million entries. As Figure 2
shows, the mean add time is roughly constant at about 22
ms until there are of the order of 5 million entries, when it
increases slowly up to a plateau around 27 ms per entry. The
EDG RLS, on the other hand, started to show significant in-
crease in the insert time from 200,000 entries and upwards.
As shown in [4], the mean insert time starts at about 20 ms
per insert but by the time there are 500,000 entries in the
catalog the insert time is about 40 ms per insert.

Figure 2: Mean add time with increasing catalog size.

Next, the add rate as a function of number of client
threads was examined, for approximately 1 million entries
in the LFC (Figure 3). This shows the add rate increasing
up to approximately 200 adds per second, up to the limit of
server threads (after which the rate falls again). Figure 3
also shows the add rate achieved by the Globus RLS when
database flush is enabled (i.e. when transactions are writ-
ten to the physical disk immediately) [6], which is about
84 adds per second independent of the number of threads.
The authors consider enabling of database flush to be essen-
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Figure 3: Add rate for increasing number of client threads.

tial for data consistency and hence do not consider the case
where database flush is disabled.

With the LFC, it is possible to change into the working
directory in the LFC namespace by a chdir operation.
This leads to improved performance when there are mul-
tiple operations in the same directory, as permissions only
need to be checked once (when the chdir is performed)
rather than with every operation. The extent of this perfor-
mance improvement was measured by examining the mean
add time as a function of the number of subdirectories in
the path to the file to be inserted. The comparative perfor-
mances of doing a chdir then using the relative pathname
and of staying in the top directory and using the absolute
pathname are shown in Figure 4. It is clear from these re-

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Number of subdirectories

M
ea

n 
tim

e 
pe

r 
in

se
rt

 (
m

s)

1 thread
2 threads
5 threads
10 threads
20 threads
50 threads

Figure 4: Mean add time with and without chdir, with in-
creasing number of subdirectories in the path.

sults that when chdir is used, the add time is independent
of the number of directories in the path, whereas when the
absolute names are used, the time taken increases propor-
tionally. The authors therefore recommend that application
code includes a call to chdir if a large number of opera-
tions are envisaged in one directory.

The performance when multiple catalog operations are
done inside database transactions was then investigated.
The mean add time was measured as the number of adds in-
cluded in a single transaction was varied, and the results are
shown in Figure 5. This shows that the optimal number of
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Figure 5: Mean add time when using transactions, with in-
creasing number of adds per transaction.

operations per transaction is between 10 and 100, but that
even at this optimal number, using transactions increases
the insert time by at least a factor of 2. After about 100
operations per transaction, the insert time increases sharply.

To understand the reason for this loss of performance,
each stage of the transaction was examined: waiting to
start, actually running, and ending the transaction. Figure 6
shows the mean time taken for each of these stages, as well
as for the whole transaction, as the number of operations
per transaction increases.

This shows that the wait time is approximately 5-10 ms
per transaction, until the number of client threads is greater
than the number of server threads, when transactions spend
upwards of 50 ms waiting for a thread to become available.
The time for ending a transaction varies randomly between
10 and 100 ms, and when this is combined with the wait
time it results in some of the observed performance loss. It
is therefore clear that the extra time is not being spent in
the LFC code, but comes from the database, and should be
investigated further at that level.

5.1.2 Delete tests

The delete rate was also measured for a varying number of
client threads, with 1 million entries in the LFC, and the
results are shown in Figure 7. The delete rate is about 150
deletes per second, up to 20 threads; beyond that, the rate
falls as there are fewer server threads than client threads.
The case where there is 1 client thread, where the time per
delete is about 16 ms, can be compared with the correspond-
ing result for the EDG RLS in [4], where the time per delete
is about 30 ms. There are no directly comparable results
available with the Globus RLS.
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Figure 6: Mean time spent by transactions in (a) waiting,
(b) running and (c) finishing.
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5.1.3 Query tests

The rate at which the LFC can perform queries for a sin-
gle filename was measured, with 1 million entries, for an
increasing number of client threads. As seen in Figure 8,
the maximum rate is about 275 queries per second, for up
to 20 threads. This is clearly lower than the rates achieved
in [6], but it is hard to draw a direct comparison between
the two, as the Globus RLS results are for a simple LFN
to SFN lookup, while the LFC performs a stat() oper-
ation on the LFN. This returns all the associated metadata
such as file size, checksum, modification time and so on, as
well as checking the ACLs. The pseudo-code in Figure 9
shows the steps which are performed. Observation of ac-
tual user patterns [12] suggests that users rarely perform a
simple lookup, but tend to request some items of metadata
with the SFN.

1 foreach ( component of LFN pathname )
2 get file metadata
3 check entry permissions
4 if ( GUID is supplied )
5 check that GUIDs match
6 return LFN and file metadata

Figure 9: Pseudo-code for a stat() operation

The results reported for the EDG RLS, on the other hand,
give a query time (for a single client thread) of about 16
ms. This corresponds to a rate of about 63 queries per sec-
ond, whereas the LFC query rate for a single thread is about
90 queries per second. It should be taken into considera-
tion that the LFC performs an SQL ORDER BY statement
when listing the entries in a directory. With large directo-
ries, this naturally has an impact on the performance. In the
EDG RLS, there was no ORDER BY, which meant it was
not possible to implement safe iterators or cursors.

Next, the time to read all the files in a directory is mea-
sured for an increasing number of files in the directory. Fig-
ure 10 shows that the total time taken increases linearly with
the number of files in the directory, up to 20 client threads.
At this point, the time spent waiting for a thread to become
available dominates, and so the total time taken becomes
independent of the directory size until there are sufficiently
many entries (more than about 3000) in the directory for
the read time to dominate. With fewer than 20 threads, the
average time to perform a read and stat() operation on
each file in the directory is between 10 and 20 ms. It is not
yet clear why the wait time becomes dominant at 20 threads
(when the number of client threads is exactly equal to the
number of server threads) rather than at 21 threads, but this
is undergoing further investigation.

The time to list and get the status information for all sym-
links in a directory shows very similar behaviour to the read
time described above, as Figure 11 shows, except that in
this case the server was running with only 6 threads, so
the wait time becomes dominant for all measurements with
more than 5 client threads. The time to traverse a chain of
symbolic links until the original file was reached was also
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Figure 10: Total read time with increasing directory size,
for varying number of client threads, 20 server threads.
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Figure 11: Total time to list and stat all symlinks in a direc-
tory, for varying number of client threads, 6 server threads.

measured, for an increasing number of links in the chain.
These results are shown in Figure 12.

The time to list and stat() all the replicas of a file (Fig-
ure 13), for an increasing number of replicas of the file, also
shows similar behaviour to the read case. In this case the
server was running with 20 threads. All of these tests of the
behaviour with increasing number of files, symbolic links
and replicas are as expected; comparable results for the two
RLS implementations are not available.

5.2 Multiple Client Tests

A subset of the tests described in Section 5.1, namely those
measuring add and query rates, were run simultaneously on
multiple clients, each running with 10 threads. Figure 14
shows the behaviour of the operation rates as the number
of clients increases when transactions are not used, while
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Figure 15 shows the rates when transactions are used, with
100 operations per transaction.

These show that the operation rates are essentially inde-
pendent of the number of clients, up to the limits of the test.
It should be borne in mind that the standard error on the data
points in these plots is of the order of 10-20 operations per
second and hence the actual variation from point to point is
less marked than the plots seem to indicate.

What is clear is that the catalog is very scalable and
shows no significant reduction in operation rate as the num-
ber of clients increases. When transactions are used, the
loss of performance observed in the single client case is
less apparent; in fact, performance is as good, within ex-
perimental uncertainty, as that without transactions.

The authors believe that the reason for the constant opera-
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clients, no transactions.
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Figure 15: Operation rates with increasing number of
clients, 100 operations per transaction.

tion rates with multiple clients is that the server is running at
maximum load. Examination of the client-side rates shows
that the load is being shared equally among the clients, and
more detailed investigation is required to understand where
exactly the bottlenecks lie.

6 Future Work

Immediate next steps for the LFC are the integration of GSI
security and integration with VOMS, as discussed in Sec-
tion 2. Future development can then aim at distributed cat-
alogs rather than a single central server, possibly using a
peer-to-peer update mechanism. The hierarchical structure
also allows the possibility of partitioning the catalog on the
LFN namespace rather than the simple hashing of GUIDs,
which is the only partitioning possible in a flat namespace.

Another possibility is to have closer coupling of the LFC
with the Disk Pool Manager (DPM) [2], which manages re-
sources on local storage. This would make local storage cat-
alogs directly part of the global Grid catalog, thus removing
inconsistencies and problems with update propagation.
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7 Related Work

There are several related Grid file management solutions.
Among them are the EDG Replica Location Service [10]
and Globus Replica Location Service [6], which are both
implementations of the RLS Framework which was defined
in collaboration by EDG and Globus [8]. A peer-to-peer
RLS system based on the Globus RLS is also being re-
searched and a prototype is presented in [3].

Somewhat more similar in concept to the LFC is the
ALICE Environment (AliEn), which is a lightweight Grid
framework developed by the Alice collaboration, one of the
LHC experiment groups. In particular, the AliEn FileSys-
tem (AliEnFS) [14] also offers a UNIX-like virtual file sys-
tem with access via a C++ API. The gLite catalog ser-
vice [7] also presents the abstraction of a global filesystem,
as does Gfarm [16], which provides a POSIX-compliant se-
cure network file system coupled to the Grid’s compute re-
sources, so that computation is always sent to the data.

The Storage Resource Broker [1] allows applications to
access heterogeneous storage resources by using metadata
attributes or logical filenames rather than physical filenames
or locations.

Also relevant, especially to the high energy physics Grid
community, is the SAM (Sequential Access via Meta-
data) [11] project, which handles data for the D0 and CDF
projects at the Fermi National Accelerator Laboratory near
Chicago.

8 Conclusions

The LCG File Catalog has been presented, outlining its im-
plementation and features. In particular, the features re-
quired by users but unavailable in other replica manage-
ment systems such as the EDG and Globus RLSs have been
highlighted. These include transaction support, checksums,
ACLs and a UNIX-like virtual file system. Other aspects,
such as the information returned by a query, have also been
implemented according to observed user patterns. The re-
sults of a series of performance tests using both single and
multiple clients accessing the server have shown the robust-
ness and scalability of the LFC up to many millions of en-
tries and hundreds of client threads.
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