

High Voltage Power Supply EHQ 8007n-F

8 floating channels with - 700 V / 4 mA each

(Art. no.: EH080-07n405R51-K)

Operators Manual

Contents

- 1. General information
- 2. Technical data
- 3. Handling

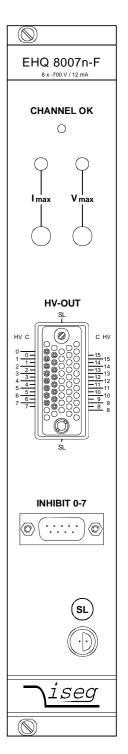
Attention!

- -The device must not be operated with the cover removed.
- -We decline all responsibility for damages and injuries caused by an improper use of the module. It is highly recommended to read the manual before any kind of operation.

Note

The information in this manual is subject to change without notice. We take no responsibility for any error in the document. We reserve the right to make changes in the product design without reservation and without notification to the users.

Filename EHQ8007n_405-F_V1.00__; version 1.00 as of 2004-06-04


1. General information

The EHQ 8007n_405-F is a 8-channel high voltage power supply in 6U Eurocard format. Each single channel is independently controllable in voltage or current control mode. The outputs HV-out positive - floating HV-GND - and HV-out negative of each channel are both floating against each other and against ground.

The EHQ 8007n_405-F is made ready for mounting into a crate. It is also possible to supply the modules separately with the necessary power. The unit is software controlled via CAN Interface directly through a PC or similar controller. The HV output at the EHQ 8007n_405-F is equipped with a REDEL connector.

2. Technical data

	EHQ 8007n_405 - F				
Output current I _O	max. 4 mA				
Output voltage Vo	0 to 700 V				
Floating	Connector "C" (+) to GND: $\leq 20 \text{ V} $ Connector "HV" (-) to GND: $\leq 20 \text{ V} $ - V _O				
Ripple and noise	$< 20 \text{ mV}$ (at max. load and $V_0 > 50 \text{ V}$)				
Interface	CAN-Interface				
Voltage setting	Via software, resolution 14 mV				
Current setting	Via software, resolution 80 nA				
Voltage measurement	Via software, resolution 14 mV				
Current measurement	Via software, resolution 80 nA				
Accuracy of measurement	Voltage: $\pm (0.01\% * V_O + 0.02\% * V_{O max})$				
(for one year)	Current: $\pm (0.01\% * I_0 + 0.01\% * I_{0 \text{ max}})$				
Temperature coefficient	< 5 * 10 ⁻⁵ / _K				
Stability	$<5*10^{-5}$ (no load/load and Δ V _{IN})				
Rate of change of output voltage	Via software: 0,28 V/s to 70 V/s resolution 0,5 V				
Channel control via software	Status 8 bit: channel error, KILL- enable, channel emergency cut-off, ramp, channel on/off, input error, current trip				
8 channels error control via hardware limit	Current limit ("Channels 0-7 OK" is signalled if Voltage limit these limits do not exceed on each.)				
Error signal	Green LED at "Channels 0-7 OK"				
Protection loop (SL), 2 pin Lemo-socket	$5 \text{ mA} < I_s < 20 \text{ mA} \Rightarrow \text{module on}$ $I_s < 0.5 \text{ mA} \Rightarrow \text{module off}$				
Protection loop per channel,	Ch0 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 GND				
Sub-D-9 connector; PIN	1 2 3 4 5 6 7 8 9				
Power requirements V _{IN}	+ 24 V (< 1,5 A) and + 5 V (< 0,5 A)				
Packing	8-channels in 6U Euro cassette (40,64 mm wide and 220 mm deep)				
Connector	96-pin connector according to DIN 41612				
HV connector	REDEL connector equipped with 16 pins				

Fax

3. Handling

The supply voltages and the CAN interface is connected to the module via a 96-pin connector on the rear side of the module.

The maximum output current and voltage for all channels is defined through the position of the corresponding potentiometer I_{max} or V_{max} at the front panel.

The output current and voltage will be limited to the setting value after it exceeds the threshold and the green LED on the front panel is 'OFF'.

If the HV channel should work in the current control mode (I_O according I_{SET} via software), the KILL function must be disable for this channel.

At the bottom on the right upper side of the front panel is the socket for the safety loop. If the safety loop is active then output voltage on all channels is only present if a current is flowing in a range of 5 to 20 mA of any polarity (i.e. safety loop closed). If the safety loop is opened during operation then the output voltages are shut off without ramp and the corresponding bit in the 'Status module' will be cancelled. After the loop will be closed again the channels must be switched 'ON' and a new set voltage must be given before it is able to offer an output voltage. The pins of the loop are potential free, the internal voltage drop is ca. 3 V. Coming from the factory the safety loop is not active (the corresponding bit is always set). Removing of an internal jumper makes the loop active (s. App. A).

Additionally it is possible to install a safety loop for each channel (n= 0 to 7) via the Sub-D-9 connector. If the INHIBIT contact pin (n) will be connected to the GND pin then the HV-PS on this channel will be switched off without ramp. The GND pins are internally connected to the module GND.

Attention: If this will be disconnected again, then the HV will be set -according to the present V_{SET} - to V_{OUT} without ramp! Please shut the channel "OFF" or write V_{SET} = 0 before!

The connector HV-out positive - floating HV-GND - of each channel should be connected to ground at a certain chosen point. Otherwise it must be sure, that the potential between HV-out positive and GND should not exceed the amount of $|20 \, \text{V}|$.

Pin assignment 96-pin connector according to DIN 41612:

PIN		PIN		PIN		Data
a1 a3 a5		b1 b3 b5		c1 c3 c5		+5V +24V GND
a11		b11		c11		<pre>@CAN_GND @CANL</pre>
a13						RESET
		b13				OFF with ramp (e.g. 10s after power fail)
a30 a31 a32	A4 A2 A0	b30 b31 b32	A5 A3 A1	c30 c31 c32	GND GND GND	Address field module address (A0 A5)

The hardware signal "OFF with ramp" (Pulse High-Low-High, pulse width \leq 100 μ s) on pin b13 will be shut off the output voltage for all channels with a ramp analogue to the Group access "Channel ON/**OFF**". The ramp speed is defined to V_{OUTmax} / 50 s. This is the actually module ramp speed after "OFF with ramp".

With help of the Group access "Channel ON/OFF" all channels are switched "ON" again.

With the address field a30/b30 a32/b32 the module address will be coded.

Connected to GND \Rightarrow A(n) = 0; contact open \Rightarrow A(n) = 1

Phone ++ 49 351 / 26 996 - 0 Fax ++ 49 351 / 26 996 - 21